R/r_squared_function.R
r_squared_profiling.Rd
This function evaluates the coefficient of determination with respect to a given threshold parameter of a parametric lifetime distribution. In terms of Rank Regression this function can be optimized (optim) to estimate the threshold parameter.
A tibble
with class wt_cdf_estimation
returned by estimate_cdf.
Further arguments passed to or from other methods. Currently not used.
A numeric value for the threshold parameter.
Supposed parametric distribution of the random variable.
Direction of the dependence in the regression model.
Returns the coefficient of determination with respect to the threshold
parameter thres
.
# Data:
data <- reliability_data(
alloy,
x = cycles,
status = status
)
# Probability estimation:
prob_tbl <- estimate_cdf(
data,
methods = "johnson"
)
# Determining the optimal coefficient of determination:
## Range of threshold parameter must be smaller than the first failure:
threshold <- seq(
0,
min(
dplyr::pull(
dplyr::filter(
prob_tbl,
status == 1,
x == min(x)
),
x
) - 0.1
),
length.out = 100
)
## Coefficient of determination with respect to threshold values:
profile_r2 <- r_squared_profiling(
x = dplyr::filter(
prob_tbl,
status == 1
),
thres = threshold,
distribution = "weibull3"
)
## Threshold value (among the candidates) that maximizes the coefficient of determination:
threshold[which.max(profile_r2)]
#> [1] 88.20909
## plot:
plot(
threshold,
profile_r2,
type = "l"
)
abline(
v = threshold[which.max(profile_r2)],
h = max(profile_r2),
col = "red"
)